
20 Rising Stars 2020 © Hodder & Stoughton Limited

Unit 2.2: We are games testers
Working out the rules for games

Knowledge, skills and concepts
In this unit, pupils will learn to:
●	 observe and describe carefully what happens in

computer games
●	 use logical reasoning to make predictions of

what a program will do and test these
●	 think critically about computer games
●	 create sequences of instructions for a virtual

robot to solve a problem
●	 work out strategies for playing a game well
●	 be aware of how to use games safely and in

balance with other activities.

Progression
In Key Stage 1:
● Pupils learned about input, output and

repetition in Unit 2.1: We are astronauts.
In Key Stage 2:
● In Unit 3.2: We are bug fixers, pupils use

computational thinking to debug Scratch programs.
● In Unit 4.1: We are software developers, pupils

develop another arithmetic game.
● In Unit 5.1: We are game developers, pupils

develop their own games in Scratch.

Overview
In this unit, pupils play some Scratch games, trying
to work out the rules of the game, i.e. the algorithms
the programmers have used. They also play a simple
coding-based game and discuss game playing. In:
●	 Session 1 pupils work out the rules (algorithms)

for a simple arithmetic game
●	 Session 2 pupils work out the rules (algorithms)

for a chase game

●	 Session 3 pupils work out the rules (algorithms)
for a two-player sports game

●	 Session 4 pupils work out the rules (algorithms)
used in a shooting game

●	 Session 5 pupils play a professionally produced
coding-based game

●	 Session 6 pupils play a turn-based two-player game,
working together to identify winning strategies.

Alternatives

The unit sessions give step-by-step guidance on carrying out this unit using Scratch. An alternative to
FixTheFactory is Blockly Games.

Software: Scratch, FixTheFactory (alternative: Blockly Games)
Hardware: iPads/Android tablets, laptops/desktop/Chromebook computers for Scratch

Differentiation
See each session (pages
23–28) for ways to increase
support and add challenge
to this unit.
Pupils learning EAL can
view the source code of the
Scratch games in their first
language using the globe
icon in the Scratch editor.

Cross-curricular opportunities
English: Pupils’ own explanations of how algorithms work will link with
their work in English.
Maths: The addition race game supports pupils’ learning in maths. Thinking
ahead to solve problems is an important aspect of mathematical reasoning.
Science: When testing their predictions, pupils are using a simple version
of the scientific method.
PE: Pupils can compare games that simulate sports (such as the Scratch
tennis game) to the real thing.
Other: Computer games offer engaging interactive simulations of
curriculum topics. Pupils can also consider the artwork, music, sound and
stories, which are essential components of many games.

481428_2.2_SOC_3E_Y2_020_029.indd 20 6/1/20 3:27 PM

21Rising Stars 2020 © Hodder & Stoughton Limited

Assessment – by the end of the unit:
All pupils can:
●	 understand that computer games are made up

of precise instructions for the computer to follow
●	 understand that programmers implement many

algorithms when making computer games
●	 use logical reasoning to make predictions about

what happens next in a game
●	 suggest improvements to simple computer games
●	 be aware of and observe age restrictions on

commercial games
●	 solve problems by working out short sequences

of simple instructions
●	 follow the rules for playing a game.

Most pupils can:
●	 describe clearly what happens in a computer game
●	 conduct tests to check their predictions
●	 notice common features in several game algorithms
●	 create longer sequences of instructions to solve

problems
●	 identify some winning strategies in a game.

Some pupils can:
●	 understand how Scratch source code determines

the behaviour of a game they play
●	 make changes to the Scratch source code for

simple computer games
●	 think one or two moves ahead when playing a

strategy game
●	 predict what their opponent will do to win when

playing a strategy game.

Background information
●	 Gaming has much in common with

programming. There is:
	 a clear sense of what can be achieved
	 a set of formal rules governing what happens
	 a varying of scope between detail and ‘big

picture’ thinking.
●	 This unit helps pupils develop their computational

thinking through ‘reverse engineering’ some
simple computer games – the pupils try to work
out how the game operates, i.e. what algorithms
the programmer used when making the game.

●	 Pupils should then look at the source code and
compare it to what they noticed while playing
the game. Just as it is important that pupils read

books as well as writing their own stories, it is
important that they spend time reading programs
written by others, as well as writing their own.

●	 Session 5 helps pupils to develop their
programming skills further by creating sequences
of instructions to solve problems for a virtual robot.

●	 Session 6 helps pupils with computational
thinking as they look for strategies for playing
Nim, a two-player game where players share a
set of counters. Nim might be credited as the first
ever computer game – a version was automated
at the New York World’s Fair of 1939, a few years
before early digital computers.

Key vocabulary
Abstraction: computational thinking approach to
managing complexity by simplifying things through
identifying what is important, and what detail can be
hidden
Algorithm: a sequence of precise instructions or
steps (sometimes a set of rules) to achieve an
objective
Computational thinking: a way of looking at
problems so that the solution can be automated
using a computer
Input: data supplied to a computer – in this case, it is
a mouse click, keyboard press or tapping on a tablet
Output: information produced by a computer – in
this case, it is moving sprites on a screen
Parallel processing: when programs run (or appear
to run) simultaneously

Pattern recognition: computational thinking
approach in which common aspects of how a system
behaves are used to simplify implementing solutions
Remix: to take a project and make changes to its
source code
Repetition: programming construct which allows a
group of instructions to be repeated a number of
times, or until a certain condition is met
Scratch: simple, block-based programming language
in which programs for characters are built by
snapping together code blocks
Source code: the code that a particular program
follows; the instructions or rules that determine what
happens in a game or other application
Sprite: a graphical character in a program that can
be given its own sequence of instructions

481428_2.2_SOC_3E_Y2_020_029.indd 21 29/05/20 5:04 PM

2222

Preparation for teaching the unit
● Check you have access to Scratch, and the�

Scratch games (see Resources needed).
● Install FixTheFactory on the iPads/Android�

tablets (or check access to Blockly Games).
● Read pages 20–21 to get an overview of the unit.
● Read the steps in the unit sessions (pages 23–28)�

and look at the associated online resources,�
printing out the worksheets as required.

● Watch the videos for this unit.
● Work through the unit yourself so you know what�

is expected of the pupils.
● Review the source code for the four Scratch

games used in Sessions 1–4, so that you can help
pupils make connections.

 Resources needed

● Software: Scratch, FixTheFactory
● Hardware: iPads/Android tablets, laptop/

desktop/Chromebook computers
● See Alternatives on page 20

 Online resources provided

Session resources
● Worksheet 2.2a: Addition race game
● Worksheet 2.2b: Fish game
● Worksheet 2.2c: Tennis game
● Worksheet 2.2d: Duck shooting
● Worksheet 2.2e: A coding game
● Worksheet 2.2f: End-of-unit quiz
● Worksheet 2.2g: Pupil self-assessment
● Teaching slides: 2.2a–2.2f
● Scratch games:

Addition race:
scratch.mit.edu/projects/15905989/
Fish: scratch.mit.edu/projects/15906446/
Tennis game:
scratch.mit.edu/projects/15906870/
Duck Shoot:
scratch.mit.edu/projects/15907506/
Nim: scratch.mit.edu/projects/330713349/

● Walkthrough video: 2.2a
● Interactive end-of-unit quiz 2.2

Additional resources
●	 Software in 60 Seconds: Introduction to Scratch
● Software in 60 Seconds: Scratch 1–3
● CPD video: Instructions for sprites

 Online safety

● Pupils will be using Scratch online in an Internet
browser. Ensure that the appropriate filters and
monitoring software is in place.

● The Scratch online community is generally a safe,
well-moderated space but if pupils encounter
inappropriate content, they should turn off their
screen or turn over their tablet, and alert an
adult. Scratch moderators can also be informed.

● Pupils need individual accounts to participate in
the Scratch community, which requires parental
approval. It would be wise to leave this until
pupils are older. Pupils with accounts need to
know how to contribute positively and what to
do if they encounter inappropriate behaviour.

●	 If you become aware of pupils playing age-
inappropriate games at home, you should inform
your designated safeguarding lead, in accordance
with your school’s safeguarding policy.

 Collaboration

Pupils work together to record their ideas when
looking at games, and later collaborate to
identify winning Nim strategies.

 Useful links

Software and tools
● Scratch: www.scratch.mit.edu
● FixTheFactory: App Store/Google Play Store
● Blockly Games: blockly.games
● Pong: www.ponggame.org
● Codergeeks space invader game:

scratch.mit.edu/projects/330698413/
● Cargo-Bot:

www.altermanchess.wixsite.com/cargobot
● Lightbot Code Hour:

www.lightbot.com/hour-of-code.html
● Bee-Bot emulator:

scratch.mit.edu/projects/11074524/editor/

Online tutorials
● Tutorials for Scratch are built in to the editor
● Nim: www.youtube.com/watch?v=sfVvdsfdV2g
● FixTheFactory:

www.youtube.com/watch?v=GPqpq09qQqc

Information and ideas
● Scratch creative computing curriculum:

www.creativecomputing.gse.harvard.edu/guide
● Nim: www.cs4fn.org/binary/nim/nim.php
● Pong: en.wikipedia.org/wiki/Pong

Rising Stars 2020 © Hodder & Stoughton Limited

481428_2.2_SOC_3E_Y2_020_029.indd 22 30/05/20 2:18 PM

https://blockly.games/
https://scratch.mit.edu/projects/15905989/
https://scratch.mit.edu/projects/15906446/
https://scratch.mit.edu/projects/15906870/
https://scratch.mit.edu/projects/15907506/
https://scratch.mit.edu/projects/330713349/
https://scratch.mit.edu/projects/11074524/editor/
https://en.wikipedia.org/wiki/Pong

29Rising Stars 2020 © Hodder & Stoughton Limited

Unit games
Below are the Scratch games used in this unit.

Session 1: Addition race game Session 2: Fish game

Session 3: Tennis game Session 4: Duck shooting game

Session 6: Nim

481428_2.2_SOC_3E_Y2_020_029.indd 29 29/05/20 5:04 PM

	Unit 2.2: We are games testers

