
20 Rising Stars 2020 © Hodder & Stoughton Limited

Unit 3.2: We are bug fixers
Finding and correcting bugs

Software: Scratch (alternative: Snap!), screen recorder software
Hardware: Laptop/desktop/Chromebook computers or tablets, microphones (if needed)

Knowledge, skills and concepts
In this unit, pupils will learn to:
●	 develop a number of strategies for finding

errors in programs
●	 build up resilience and strategies for problem

solving
●	 increase their knowledge and understanding of

Scratch
●	 recognise a number of common types of bugs

in software.

Progression
In Key Stage 1:
●	 Pupils fix sequences of instructions to get a

Blue-Bot to a particular destination in Unit 1.1:
We are treasure hunters.

●	 Pupils program a sprite on-screen in Scratch in
Unit 2:1: We are astronauts.

In Key Stage 2:
●	 Pupils program in Scratch in Unit 3:1: We are

programmers.
●	 Pupils will continue to develop Scratch programs

and apply debugging skills to their own programs
in Unit 4.1: We are software developers and
Unit 5.1: We are game developers.

Assessment – by the end of the unit:
All pupils can:
●	 correct ‘off-by-one’ errors in loops
●	 improve the performance of the circle drawing

program
●	 get the dialogue in the joke program to work in

sequence
●	 experiment with the speed variable and other

factors in the racing car simulator.

Most pupils can:
●	 describe how the times table program works
●	 describe how the circle drawing program works
●	 describe how the two joke scripts work together
●	 correct the ‘Pong’ style game so the bounce is

more realistic
●	 describe how the racing car simulator works.

Some pupils can:
●	 explain how they debugged the times table

program using logical reasoning
●	 explain the connection between the number of

steps, step size and turn in the circle drawing
program

●	 explain how they corrected the joke program
●	 describe how the ‘Pong’ style program works
●	 suggest explanations for the bug in the racing

car simulator.

Overview
In this unit, pupils learn to recognise some common
types of programming error, and practise solving
problems through logical thinking. In:
●	 Session 1 pupils identify and correct off-by-one

bugs
●	 Session 2 pupils identify and correct performance

bugs
●	 Session 3 pupils identify and correct multithread

bugs
●	 Session 4 pupils identify and correct conceptual

bugs
●	 Session 5 pupils identify and correct arithmetical

bugs
●	 Session 6 pupils identify and correct resource bugs.

Alternatives

Pupils could develop their debugging skills
by fixing the code they and their classmates
develop, for example by combining ideas from
this unit with Unit 3.1: We are programmers.
You do not have to use the example scripts
provided. You could use your own scripts or your
pupils’ scripts, instead. Pupils could debug and/or
develop programs downloaded from the Scratch
website, which are all covered by a Creative
Commons licence, i.e. they can be reused as long
as the original author is credited and the resulting
projects are shared on the same basis.

481435_SOC_3E_U3.2_020_029.indd 20 8/4/20 11:50 PM

21Rising Stars 2020 © Hodder & Stoughton Limited

Key vocabulary
Abstraction: computational thinking approach to
managing complexity by simplifying things through
identifying what is important, and what detail can
be hidden or ignored
Algorithm: a sequence of precise instructions or steps
(sometimes a set of rules) to achieve an objective
Bug: an error or mistake in a program or algorithm,
causing the computer or robot to behave in a
manner that was not originally intended
Code: instructions (or sometimes rules) that can be
understood by a computer
Debug: correct mistakes in a computer program or
algorithm
Event: something that happens within a computer
program to cause some particular code to be run,
such as an internal message being received, or a
sprite being tapped by the user
Input: data supplied to a computer – in this case, the
algorithm taken from the storyboard for the animation
Logical reasoning: to be able to give a reason for
something which others would have to accept as
correct

Output: information produced by a computer – in
this case, an animation
Parallel processing: when programs run (or appear
to run) simultaneously
Program: sequence of instructions (or sometimes a
set of rules) that can be followed by a computer
Repetition: programming construct which allows a
group of instructions to be repeated a number of
times, or until a certain condition is met
Scratch: simple, block-based programming language
in which programs for characters are built by
snapping together code blocks
Sequence: placing programming instructions in
order, so each one happens one after the other
Sprite: a graphical character in a program that can
be given its own sequence of instructions
Variable: named storage location in a computer’s
memory

Differentiation
See each session (pages 23–28) for ways to
increase support and add challenge to this unit.
For pupils learning EAL, show how they can
program Scratch in their first language by
selecting this from the globe icon at the top of
the screen. This unit uses maths skills, so you may
want to give extra support to pupils who struggle
with maths. Some pupils may benefit from working
with a partner, particularly for the final two steps.
Pupils can be challenged to modify or extend
the example programs here, once they have
successfully debugged them.

Cross-curricular opportunities
Art and design: Pupils discuss and critique the
characters and backdrops in animations.
English: Pupils check the plot of the animation
based on a traditional tale or picture book.
Maths: Explore times tables and shape drawing
animations online.
Music: Pupils could suggest improvements to
music for the animations/games.

Background information
●	 Much of the work, and fun, in programming lies

in spotting and correcting mistakes, known as
‘bugs’. The process of finding and fixing bugs is
called ‘debugging’. In this unit, pupils will debug
programs that accomplish specific goals.

●	 The more complex a program is, the more likely
bugs are to occur. Debugging and developing
others’ projects is a great way for pupils to
use logical reasoning to explain how simple

algorithms work and to detect and correct errors
in algorithms and programs.

●	 We call it debugging because when Admiral
Grace Hopper was working on a Mark II
computer at Harvard University in the 1940s,
her associates discovered a moth stuck in a
relay which stopped the Mark II from operating.
Hopper remarked that they were ‘debugging’
the system.

481435_SOC_3E_U3.2_020_029.indd 21 8/4/20 11:50 PM

22

 Things to do

●	 Decide which software/tools are most accessible
and appropriate for use with your class. Scratch
is recommended and the example scripts provided
are all built using Scratch (see Resources needed).

●	 Download your chosen software/tools (see
Useful links), or ensure pupils have access to the
Scratch website. They do not need to register for
accounts.

●	 Read pages 20–21 to get an overview of the unit.
●	 Read the steps in the unit sessions (pages 23–28)

and look at the associated online resources,
printing out the worksheets as required.

●	 Watch the CPD videos.
●	 Work through the example scripts provided on

the online resources and have a go at debugging
them.

●	 Watch the walkthrough videos for this unit (see
Online resources).

●	 Ensure you have enough computers/laptops/
tablets and other equipment booked in advance.

●	 Decide whether you need evidence of pupils’
debugging – are corrected scripts sufficient, or do
you want pupils to record screencasts? It is useful
for pupils to be able to record an explanation
of how they improved the scripts, but the time
taken will detract from their programming.

 Resources needed

●	 Software: Scratch (alternative: Snap!), screen
recorder software

●	 Hardware: Laptop/desktop/Chromebook
computers or tablets and microphones
(if needed)

 Online resources provided
Session resources
●	 Worksheet 3.2a–e: Debugging support sheets
●	 Worksheet 3.2f: End-of-unit quiz
●	 Worksheet 3.2g: Pupil self-assessment
●	 Teaching slides 3.2a–3.2f
●	 Walkthrough videos 3.2a–3.2g
●	 Six Scratch scripts (with bugs)
●	 Interactive end-of-unit quiz 3.2
Additional resources
●	 CPD video: Different approaches to debugging
●	 CPD video: Thinking about bugs
●	 CPD video: Screencasting
●	 CPD video: Multithreading

 Online safety

●	 Pupils do not need accounts to download Scratch
or to use Scratch or Snap! online.

●	 If pupils do register for accounts, they need to
give a parent’s or carer’s email address, so you
should check with parents or carers that they are
happy for their children to do this.

●	 Once registered, pupils can share their corrected
and refined programs with the global Scratch
community in a safe online space. Alternatively,
pupils can upload to a school platform.

●	 If pupils upload screencasts of their solutions,
make sure you take the usual precautions to
protect their identity.

●	 If pupils use the Internet for research, ensure all
usual Internet safety protocols are in place.

 Collaboration

	Pairs work collaboratively to discuss the key features
of a good game, suggest improvements and debug
problems. Partners will work together to correct
the programming of sprites and backdrops, so that
the game is more interesting and it works more
effectively.

 Useful links

Software and tools
●	 Scratch: scratch.mit.edu/download
●	 Scratch Online: scratch.mit.edu/projects/editor
●	 Snap!: snap.berkeley.edu/snapsource/snap.html
●	 Screencast-o-matic:

www.screencast-o-matic.com/screen_recorder
Online tutorials
●	 Scratch tutorials are part of the editor
●	 Bug solutions: youtu.be/grMMY2LSKFI
Information and ideas
●	 Scratch project directory:

scratch.mit.edu/studios/27267652
●	 Further debugging challenges:

scratch.mit.edu/studios/219583
●	 Video clip 1: Creating a driving simulator:

www.bbc.co.uk/programmes/p016j4g5
●	 Video clip 2: Simulating Formula 1 racing:

www.bbc.co.uk/programmes/p016612j
●	 Video clip 3: Google’s self-driving cars:

www.youtube.com/watch?v=cdgQpa1pUUE

Preparation for teaching the unit

Rising Stars 2020 © Hodder & Stoughton Limited

481435_SOC_3E_U3.2_020_029.indd 22 11/08/20 3:09 PM

https://scratch.mit.edu/download
https://scratch.mit.edu/projects/editor
https://snap.berkeley.edu/snap/snap.html
https://www.youtube.com/watch?v=grMMY2LSKFI&feature=youtu.be
https://scratch.mit.edu/studios/27267652/
https://scratch.mit.edu/studios/219583/

29Rising Stars 2020 © Hodder & Stoughton Limited

Unit outcomes
Below are some examples of the outcomes you could expect from this unit.

Session 1: Fixing an off-by-one bug Session 2: Fixing a performance bug

Session 3: Fixing a multithread bug Session 4: Fixing a conceptual bug

Session 5: Fixing an arithmetical bug Session 6: Fixing a resource bug

481435_SOC_3E_U3.2_020_029.indd 29 11/08/20 3:09 PM

